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Elevated bile acid (BA) concentrations in the liver is associated

with severe disease, including cholestasis and hepatocellular

carcinoma. The nuclear Farnesoid X Receptor (FXR) is the

master regulator of BAs homeostasis. In the ileum, BA-

dependent FXR activation induces the production of the

fibroblast growth factor FGF19, a hormone that reaches the

liver through the portal system where it represses the

expression of CYP7A1, the rate limiting enzyme in the process

of hepatic BAs synthesis. This gut–liver FXR–FGF19 dual action

is the paradigm of physiological BA regulation and it is currently

targeted in the clinical practice for liver disease such as primary

cholangitis. At a variance of FXR activation, native FGF19 has

strong anti-cholestatic and anti-fibrotic activity in the liver but it

retains peculiar pro-tumorigenic actions. Thus, novel

analogues have been generated to avoid tumorigenic capacity

while maintaining BA metabolic action. Here we present a novel

and intriguing view on the putative possibility to target the FXR–

FGF19 duo in order to offer a bona fide promising therapeutic

approach to bile acid promoted hepatocarcinoma.
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Bile acids and hepatocarcinoma (HCC)
Bile acids (BAs)are amphipatic steroids able to facilitate the

digestion of dietary lipids and liposoluble vitamins. They

represent the major system for cholesterol excretion in

which cholesterol is removed from the body, as they are

synthesized from cholesterol in the liver [1]. Altered BA
www.sciencedirect.com 
signaling in the liver and intestine is associated with severe

disease, including the development of inflammation and

cholestasis with susceptibility to hepatocarcinoma (HCC).

Indeed, despite their beneficial role in solubilizing lipo-

philic nutrients such as dietary fat, steroids and vitamins,

thereby facilitating their intestinal absorption, high levels

of BAs causes inflammation, DNA oxidative damage, cell

proliferation and inhibits apoptosis, subsequently promot-

ing neoplastic transformation of hepatocytes [2]. Thus, a

tight regulation of BA concentration is essential for both

cholesterol homeostasis and hepatic health [3,4].

In the liver, BAs are synthesized via a series of enzymatic

reactions, initiated by a microsomal cholesterol 7a-
hydroxylase (CYP7A1), which converts cholesterol to

7a-hydroxycholesterol, representing the rate-limiting

step in the BA synthesis [5]. Before active secretion of

BAs into the canalicular lumen, primary BAs are conju-

gated with taurine or glycine to form less cytotoxic bile

salts, readily secretable into bile [6]. After postprandial

stimuli, bile salts are released from the gallbladder into

the small intestine and at the distal ileum and 95% of BAs

are actively absorbed, returned back to the liver through

the portal circulation, thus reducing the energy expendi-

ture for de novo BA biosynthesis [7]. In the colon, primary

BAs are transformed to secondary BAs (lithocholic acid,

LCA and deoxycholic acid, DCA) through action of

intestinal bacteria by a de-conjugation process and are

then are passively absorbed by enterocytes, returned back

to the liver where they are re-conjugated. Approximately

5% of the BA pool per day escape intestinal reabsorption

and are excreted into the feces. This loss is accurately

compensated by de novo synthesis in the liver in order to

maintain the pool size which represent a major determi-

nant of cholesterol turnover.

Alterations in bile flow, due to defects in the bile forma-

tion process or caused by a physical obstruction in bile

ducts are responsible for cholestatic liver disorders. Muta-

tions in the ABCB11 gene causes progressive familial

intrahepatic cholestasis (PFIC) type 2. The ABCB11

gene encodes for BSEP, the primary canalicular bile salt

export pump which mediates the active transport of BAs

into the canalicular lumen, generating bile flow [8].

Defective BA export leads to progressive cholestasis

and Abcb11�/� mice, as expected, are characterized

by progressive accumulation of hepatic BA, leading to

liver injury [9]. The elevated BAs in this murine model
Current Opinion in Pharmacology 2018, 43:93–98

mailto:antonio.moschetta@uniba.it
https://doi.org/10.1016/j.coph.2018.08.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coph.2018.08.005&domain=pdf
http://www.sciencedirect.com/science/journal/14714892


94 Endocrine & metabolic diseases
induces changes in the metabolic state by disrupting

glycolysis and gluconeogenesis and by alterations in

the fatty acid oxidation. As a result, intracellular ROS

are increased and causes liver inflammation, necrosis and

fibrosis [10].

Defects in ABCB4 gene, encoding the multidrug resis-

tance class III (MDR3) protein, cause the PFIC type

3 [11]. MDR3 is expressed in the canalicular membrane of

hepatocytes and is mainly involved in phosphatidylcho-

line excretion in the bile [12]. ABCB4�/� mice are

characterized by the absence of MDR3 protein, resulting

in low biliary phospholipid levels that promote bile

regurgitation into the portal tracts accompanied by spon-

taneous development of periportal biliary fibrosis and

liver injury [13]. After 2–3 weeks of age, Abcb4�/� mice

display inflammation, ductural proliferation and fibrosis,

resulting in hepatocyte dysplasia at 4–6 months. These

mice develop liver tumors in 16 months [14]. Thus, the

regulation of these ABC transporters is crucial in order to

avoid BAs overload and consequently liver injury and

their concentrations require a tight regulation in order to

prevent hepatic disease.

FXR–FGF15/19 in the control of BAs synthesis
The nuclear receptor FXR is the master regulator of BAs

homeostasis, modulating their synthesis, absorption and

uptake [15]. FXR decreases BA de novo hepatic biosyn-

thesis by reducing the expression of CYP7A1. At the

canalicular membrane, newly-synthesized BAs are conju-

gated under regulation of FXR through the activation of

the BA-CoA-synthase (BACS) and BA-CoA-amino acid

N-acetyltransferase (BAAT) enzymes [16]. Conjugated

BAs are then secreted into the gallbladder by the bile salt

export pump (BSEP/ABCA11) and the multidrug related

protein 2 (MRP2/ABCC2). The expression of these genes

is under the control of FXR. After postprandial stimuli,

BAs are secreted into the intestine. In the ileum, Apical

Sodium-dependent Bile Acid Transporter (ASBT) deter-

mines the uptake of BAs, while IBABP is responsible for

BAs transport from the apical to the basolateral mem-

brane [17–19]. BAs are secreted in the portal blood by the

heterodimeric organic solute transporter a/b (OST a/b).
Post secretion, BAs are transported back to the liver,

where a great majority is reabsorbed by the sodium

(Na)-Taurocholate Cotransporter Protein (NTCP) and

organic anion transporting polypeptide (OATP), both

negatively regulated by FXR, thereby limiting the

increase of hepatic BA levels. Finally, BAs are re-secreted

into the bile [7], closing up the BAs enterohepatic circu-

lation. Clearly, FXR represents the sensor of intracellular

BA concentration in the hepatocytes, being able to tran-

scriptionally regulate both secretion or excretion and their

uptake or emittance. Nevertheless, this control by FXR is

not limited to the liver. Indeed, FXR is highly expressed

in the gut and have been identified as a key regulator of

the gut–liver cross talk.
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In the ileum, BA-dependent FXR activation induces the

production and secretion of the fibroblast growth factor

FGF15 (mouse) and 19 (humans) in the portal circulation.

FGF19 is an endocrine hormone that is able to repress

CYP7A1 expression in the liver and thus reduces BAs

synthesis. FGF19 binds the receptor FGFR4 with the

coreceptor bklotho, triggering downstream signaling cas-

cades [20–22]. Studies employing chimera of FGF19

protein have revealed that the C-terminus region is

responsible for the binding to b-klotho, whereas the N-

terminus appears to be important for FGFR activation

[23]. The FGF15/19 mechanism of action seems to

involve the extracellular signal-related kinase (ERK)1/

2/mitogen-activated protein kinase (MAPK) pathway as a

mediator of FGF15/19 inhibitory effect on BA synthesis

[23] (Figure 1). However, the molecular mechanisms

downstream of the FGF15/19–FGFR4–b-klotho com-

plex are not fully understood.

The relative contribution of hepatic and intestinal FXR

in mediating CYP7A1 repression was shown through

tissue-specific FXRKO murine models, where a more

determinant role of intestinal FXR was revealed [24].

This mechanism represents an important crosstalk

between intestine and liver for the regulation of BA

synthesis.

The protective role of FXR against HCC
HCC is among the most lethal and prevalent human

tumors and to date the therapeutic options are limited

[25]. Recent findings have clearly indicated that FXR

might be implicated in liver tumorigenesis [3,4,26].

Indeed, FXR has been shown to prevent oxidative dam-

age, inflammation and resistance to apoptosis induced by

chronic high accumulation of BAs [27].

The important role of FXR in the control of BA metabo-

lism was initially demonstrated in FXR-null mice which

are unable to maintain control of BA synthesis and trans-

port. These mice display a deregulation of the CYP7A1

and IBABP genes upon CA-supplemented diet, with

subsequently inactivation of the hepatic canalicular secre-

tion, increases of BA hydrophilicity and urinary and fecal

BA loss, leading to enlarged BAs pool size [28]. Further-

more, FXR-null mice exhibit high levels of the pro-

inflammatory cytokines IL-1b, b-catenin and c-Myc at

3 months of age. The up-regulation of pro-inflammatory

cytokines, resistance to apoptosis and cell hyperprolifera-

tion induced by increased BA pool size in the FXR-null

mice results in spontaneous HCC development between

12 and 15 months of age [26,29–31].

Interestingly, transgenic mice that constitutively express

active FXR in the intestine (iVP16FXR) are protected

from chemically-induced and genetically-induced chole-

stasis. This protective effect is attributed to the induction

of intestinal FGF15 and repression of hepatic Cyp7a1
www.sciencedirect.com
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Figure 1

Enterohepatic circulation and BA metabolism
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The enterohepatic circulation. At the canalicular membrane, BAs are conjugated and secreted in the gallbladder by BSEP/ABCA11 and MRP2/

ABCC2. After postprandial stimuli, BAs are secreted into the intestine and they are actively transported into the enterocytes by ASBT, while IBABP

is responsible for BAs movement from the apical to the basolateral membrane. BAs are then secreted in the portal circulation by OST a/b and, in

the liver, they are reabsorbed by NTCP and OATP. BA-dependent FXR activation induces the secretion in the portal circulation of the FGF15/19

that reaches the liver and binds the receptor FGFR4 with the co receptor b klotho, repressing CYP7A1 expression and thus reducing BAs

synthesis.
expression, downregulation of BA synthesis and upregu-

lation of intestinal BA disposal [32]. De Girolamo

et al. demonstrated that intestinal FXR activation protects

from hepatocarcinogenesis through a tight control of BA

synthesis via the Fgf15/Fgfr4 enterohepatic signaling

axis. Moreover, iVP16FXR mice displayed a reduction

of liver inflammation, hyperproliferation and collagen

deposition and the activation of intestinal FXR protected

mice from spontaneous HCC formation even in absence

of hepatic FXR [33�]. Taken together, these data strongly

indicates that intestinal FXR is a negative modulator of
www.sciencedirect.com 
hepatic inflammation and cellular proliferation induced

by hepatic toxic bile acid accumulation.

In this scenario, semisynthetic and synthetic FXR ago-

nists have been designed to create selective and potent

FXR activators that could be beneficial in patients with

metabolic disease and HCC. Obeticholic acid (OCA), also

known as INT-747, is a selective FXR agonist that was

described for the first time in 2002 and is currently used

for the treatment of primary biliary cholangitis. The

FLINT study demonstrated that long-term OCA
Current Opinion in Pharmacology 2018, 43:93–98
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administration ameliorates liver fibrosis, steatosis and

lobular inflammation, preventing progression and even-

tually ‘treating’ non-alcoholic steatohepatitis (NASH)

[34��]. Long term studies are definitively required to

define the eventual role of INT-747 in the prevention

of HCC in patients at risk and/or as a treatment option of

HCC.

Intriguingly, a dual FXR and membrane bile acid

receptor TGR5 agonist named INT-767, a novel semi-

synthetic 23-sulfate derivative of obeticholic acid,

improves the cholestasis phenotype with a reduction

of biliary BA output [35]. In db/db mice, INT-767

ameliorates hepatic histological features and decreases

the production of pro-inflammatory cytokines [35].

Furthermore, in Abcb4�/� mice FXR activation by

long term-administration of INT-767 stimulates

Fgf15 at the transcriptional level, thereby repressing

hepatic Cyp7a1 expression, triggering a synergistic gut–

liver signaling pathway that leads to total serum BAs

reduction and HCC prevention [36�]. Thus, INT-767

prevents from spontaneous HCC development via FXR

activation by regulating BA synthesis, supporting the

eventual therapeutic exploitation of FXR activation in

the clinical management of HCC [36�].

The role of FGF19 in HCC development: friend
or foe?
The discovery of the role of the enterokine FGF15/19

in the feedback regulation of BA synthesis emphasizes

the importance of the crosstalk between the liver and

intestine for BA homeostasis [21]. Indeed, FGF15/19

has a key role in the regulation of BA homeostasis

through the FXR-mediated Cyp7a1 inhibition [21].

In addition, FGF15/19 is able to reduce glucose syn-

thesis and lowers triglycerides levels, inducing fatty

acid oxidation and glycogen and protein synthesis. In

mice, the administration of FGF19 protects from diet-

induced obesity [37,38].

Elevated FGF19 plasma levels were found in patients

with extrahepatic cholestasis, insulin resistance and non-

alcoholic fatty liver disease (NAFLD) [39] suggesting

that FGF19 modulation might offer a promising thera-

peutic potential in several metabolic disease. Modica

et al. demonstrated, that intestinal FXR overexpression

induces FGF15 gene expression and protects liver from

cholestasis reducing BA pool size in mice [32]. However,

this hormone has been also involved in the development

of HCC. Indeed, the expression of FGF19 in transgenic

mice induces HCC development between 10 and

12 months of age [40]. In HCC patients, FGF19 expres-

sion is up-regulated and is correlated with poor prognosis

[41]. The FGF19 tumorigenic activity has been attrib-

uted to a cross-talk between FGFR4 and b-catenin [42].

Accordingly, it has been shown that in mice with ectopic

FGF19 expression, the use of FGFR4-neutralizing
Current Opinion in Pharmacology 2018, 43:93–98 
antibody reduced tumor growth, opening to novel thera-

peutic strategies to limit hepatocyte proliferation [42,43].

Recently, it has been demonstrated that hepatocytes-

specific deletion of stat3 and genetic or pharmacological

ablation of IL6 are able to inhibit FGF19 induced HCC,

with unchanged FGF19 functions on BA, glucose and

energy metabolism [44�].

To obviate the mitogenic FGF19 activity, several engi-

neered FGF19 variants have been generated aiming to

maintain the metabolic activity excluding the protumori-

genic ones. One variant, M70, that differs from wild-type

FGF19 by 5-amino acids deletion at the N-terminus and

the substitution of 3-amino acids [44�,45], fully retains

BA regulatory activity but is devoid of pro-tumoral

activity in mouse models [45]. In Abcb4�/� mice,

M70 reduces hepatic inflammation and biliary fibrosis

through CYP7A1 inhibition decreasing BA pool size [46].

Moreover, in a mouse model of NASH, M70 decreases

liver injury and ameliorates histological features of

NASH, glucose and lipid metabolism representing a

promising approach to treat this pathology [46]. A phase

II clinical trial has tested the safety and efficacy of

NGM282 (M70) for the treatment of NASH. In these

patients, the administration of 3 mg or 6 mg of NGM282

was well tolerated and reduced liver fat content as well as

liver inflammation and fibrosis [47��]. Further studies are

needed to evaluate the impact of M70 or others FGF19

engineered variants in the management of gut–liver axis

diseases.

In conclusion, the gut–liver FXR–FGF19 duo represents

the paradigm of physiological BA negative feedback

regulation of their synthesis. The activation of this path-

way could be a putative antifibrotic therapy in NASH.

Here we presented a novel and intriguing view on the

possibility to target this FXR–FGF19 duo in order to offer

a bona fide promising therapeutic approach to bile acid

promoted hepatocarcinoma. Future studies are needed to

prove this hypothesis correct.
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